Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569661

RESUMO

ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer's disease by reducing ß-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable side effects such as cognitive worsening. The latter could have been the result of the inhibition of BACE at the synapse where it is expressed in high amounts. We have previously shown that prolonged inhibition of BACE interferes with structural synaptic plasticity, most likely due to the diminished processing of the physiological BACE substrate Seizure protein 6 (Sez6) which is exclusively processed by BACE1 and is required for dendritic spine plasticity. Given that BACE1 has significant amino acid similarity with its homolog BACE2, the inhibition of BACE2 may cause some of the side effects, as most BACE inhibitors do not discriminate between the two. In this study, we used newly developed BACE inhibitors that have a different chemotype from previously developed inhibitors and a high selectivity for BACE1 over BACE2. By using longitudinal in vivo two-photon microscopy, we investigated the effect on dendritic spine dynamics of pyramidal layer V neurons in the somatosensory cortex in mice treated with highly selective BACE1 inhibitors. Treatment with those inhibitors showed a reduction in soluble Sez6 (sSez6) levels to 27% (elenbecestat, Biogen, Eisai Co., Ltd., Tokyo, Japan), 17% (Shionogi compound 1) and 39% (Shionogi compound 2), compared to animals fed with vehicle pellets. We observed a significant decrease in the number of dendritic spines with Shionogi compound 1 after 21 days of treatment but not with Shionogi compound 2 or with elenbecestat, which did not show cognitive worsening in clinical trials. In conclusion, highly selective BACE1 inhibitors do alter dendritic spine density similar to non-selective inhibitors if soluble (sSez6) levels drop too much. Low-dose BACE1 inhibition might be reasonable if dosing is carefully adjusted to the amount of Sez6 cleavage, which can be easily monitored during the first week of treatment.


Assuntos
Doença de Alzheimer , Ácido Aspártico Endopeptidases , Animais , Camundongos , Ácido Aspártico Endopeptidases/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Espinhas Dendríticas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Acta Neuropathol ; 144(4): 615-635, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35976433

RESUMO

Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP.


Assuntos
Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Tauopatias , Astrócitos/patologia , Cromatina , Humanos , Paralisia Supranuclear Progressiva/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Brain Pathol ; 31(4): e12914, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33089580

RESUMO

Primary 4-repeat tauopathies with frontotemporal lobar degeneration (FTLD) like Progressive Supranuclear Palsy (PSP) or Corticobasal Degeneration (CBD) show diverse cellular pathology in various brain regions. Besides shared characteristics of neuronal and oligodendroglial cytoplasmic inclusions of accumulated hyperphosphorylated tau protein (pTau), astrocytes in PSP and CBD contain pathognomonic pTau aggregates - hence, lending the designation tufted astrocytes (TA) or astrocytic plaques (AP), respectively. pTau toxicity is most commonly assigned to neurons, whereas the implications of astrocytic pTau for maintaining neurotransmission within the tripartite synapse of human brains is not well understood. We performed immunofluorescent synapse labeling and automated puncta quantification in the medial frontal gyrus (MFG) and striatal regions from PSP and CBD postmortem samples to capture morphometric synaptic alterations. This approach indicated general synaptic losses of both, excitatory and inhibitory bipartite synapses in the frontal cortex of PSP cases, whereas in CBD lower synapse densities were only related to astrocytic plaques. In contrast to tufted astrocytes in PSP, affected astrocytes in CBD could not preserve synaptic integrity within their spatial domains, when compared to non-affected internal astrocytes or astrocytes in healthy controls. These findings suggest a pTau pathology-associated role of astrocytes in maintaining connections within neuronal circuits, considered as the microscopic substrate of cognitive dysfunction in CBD. By contrasting astrocytic-synaptic associations in both diseases, we hereby highlight astrocytic pTau as an important subject of prospective research and as a potential cellular target for therapeutic approaches in the primary tauopathies PSP and CBD.


Assuntos
Astrócitos/patologia , Degeneração Corticobasal/patologia , Paralisia Supranuclear Progressiva/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Paralisia Supranuclear Progressiva/metabolismo
4.
EMBO J ; 38(23): e102345, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701556

RESUMO

In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of ß-amyloid (Aß) peptide. Aß deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aß deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aß-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aß deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.


Assuntos
Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Regulação da Expressão Gênica , Placa Amiloide/prevenção & controle , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...